[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]
Re: process vs. data
- To: <WFreitag@aol.com>, <idrama@flutterby.com>
- Subject: Re: process vs. data
- From: Chris Crawford <chriscrawford@wave.net>
- Date: Fri, 02 Feb 2001 10:39:58 -0800
- In-Reply-To: <3b.fe3c6cd.27ab2f30@aol.com>
- Sender: owner-idrama@flutterby.com
- User-Agent: Microsoft-Outlook-Express-Macintosh-Edition/5.02.2022
Walt, there is an easy basis for agreement between us in the observation
that data and process and be substituted for each other in any desired
ratio. You can perform addition with a huge lookup table, and you can
replace the constant pi with an infinite series calculation. The hard-wired
branching scheme you describe is analogous to a lookup table for long
division. Symmetry of implementation, however, does not provide an arguement
for conceptual symmetry. Memorizing you guzzinta tables (i.e., "8 guzzinta
40 5 times") will not help you understand division. There remains a
fundamental and profound asymmetry between process and data. There are math
prodigies who can calculate the fifth root of a 10 digit number in 12
seconds -- but who can't understand the notion of addition. In the same way,
we can always fake interactive storytelling with big data tables, and an
outsider will not be able to discern the difference between a faked
data-intensive design and a genuine process-intensive design -- but this
will only work in the early, primitive stages of our work. In evolutionary
terms, data-intensive approaches are a dead end because they don't help us
understand the deeper issues. Sure, you can memorize 8 guzzinta 40, but what
happens when you need to know the value of 8.1743291 guzzinta 42.1917446?
Chris